
Building a decision tree 69

As you’ve already seen, decision trees can naturally handle variables of any
type without special encoding, although we did see that a local form of
mean/target encoding can be used to reduce the computational burden im-
posed by nominal categorical splits. Nonetheless, using an encoding strategy,
like OHE, can sometimes improve the predictive performance or interpretabil-
ity of a tree-based model; see Kuhn and Johnson [2013, Sec. 14.7] for a brief
discussion on the use of OHE in tree-based methods. Further, some tree-based
software, like Scikit-learn’s sklearn.tree module, require all features to be
numeric—forcing users to employ di�erent encoding schemes for categorical
features. See Boehmke and Greenwell [2020, Chap. 3] for details on di�erent
encoding strategies (with examples in R), and further references.

2.5 Building a decision tree

In the previous sections, we talked about the basics of splitting a node (i.e.,
partitioning some subset of the learning sample). Building a CART-like deci-
sion tree starts by splitting the root node, and then recursively applying the
same splitting procedure to every resulting child node until a saturated tree is
obtained (i.e., all terminal nodes are pure) or other stopping criteria are met.
In essence, the partitioning stops when at least one of the following conditions
are met:

• all the terminal nodes are pure;

• the specified maximum tree depth has been reached;

• the minimum number of observations that must exist in a node in order
for a split to be attempted has been reached;

• no further splits are able to decrease the overall lack of fit by a specified
factor;

• and so forth.

This often results in an overly complex tree structure that overfits the learning
sample; that is, it has low bias, but high variance.

To illustrate, consider a random sample of size N = 500, generated from the
following sine wave with Gaussian noise:

Y = sin (X) + ‘,

where X ≥ U (0, 2fi) and ‘ ≥ N (0, ‡ = 0.3). A scatterplot of the data, along
with the true response function, is shown in Figure 2.12.

70 Binary recursive partitioning with CART

í1

0

1

0 2 � 6
[

y

FIGURE 2.12: Data generated from a simple sine wave with Gaussian noise.
The black curve shows the true mean response E (Y |X = x) = sin (x).

Figure 2.13 shows the prediction function from two regression trees fit to the
same data.i The tree on the left is too complex and has too many splits, and
exhibits high variance, but low bias (i.e., it fits the current sample well, but
the tree structure will vary wildly from one sample to the next because it’s
mostly fitting the noise here); unstable models, like this one are often referred
to as unstable learners (more on this in Section 5.1). The tree on the right,
which is a simple decision stump (i.e., a tree with only a single split), is too
simple, and will also not be useful for prediction because it has extremely
high bias, but low variance (i.e., it doesn’t fit the data too well, but the tree
structure will be more stable from sample to sample); such a weak performing
model is often referred to as a weak learner (more on this in Section 5.2).

Neither tree is likely to be accurate when applied to a di�erent sample from
the same model; the ensemble methods discussed in Part II of this book can
improve the performance of both weak and unstable learners. When using a
single decision tree, however, the question we need to answer is, How complex
should we make the tree? Ideally, we should have stopped splitting nodes at
some subtree along the way, but where?

A rather careless approach is to build a tree by only splitting nodes that meet
some threshold on prediction error. However, this is shortsighted because a
low-quality split early on may lead to a very good split later in the tree. The
standard approach to finding an optimal subtree—basically, determining when

iThe associated tree diagrams are shown in the top left and bottom right of Figure 2.14
(p. 73), respectively.

Building a decision tree 71

í1

0

1

0 2 � 6
[

y
2vergrRZQ GeFLsLRQ Wree

í1

0

1

0 2 � 6
[

y

8QGergrRZQ GeFLsLRQ Wree

FIGURE 2.13: Regression trees applied to the sine wave example. Left: this
tree is too complex (i.e., low bias and high variance). Right: this tree is too
simple (i.e., high bias and low variance).

we should have stopped splitting nodes—is called cost-complexity pruning, or
weakest link pruning [Breiman et al., 1984], or just pruning for short. Other
pruning procedures are discussed in Ripley [1996, pp. 226–231] and Zhang
and Singer [2010, pp. 44–49]. Pruning a decision tree is quite analogous to
the process of backward elimination in multiple linear regression—start with
a complex tree with too many splits, and prune o� leaves whose contributions
aren’t enough to o�set the added complexity. The details are covered in the
next section.

2.5.1 Cost-complexity pruning

The idea of pruning a decision tree is similar to the process of backward
elimination in multiple linear regression. In essence, we build a large tree with
too many splits, denoted T0, and then prune it back by collapsing internal
nodes until we find some optimal subtree, denoted Topt, that meets a certain
criterion, like having the smallest cross-validation error.

Let {Ak}
K

k=1 be the terminal nodes of some tree T , where |T | = K is the num-
ber of terminal nodes, or size of T . Recall that the overall goal of CART is to
extract homogenous subgroups (i.e., terminal nodes). In this sense, the overall
quality (or risk) of the tree depends on the quality of its terminal nodes. We
define the risk of the tree to be R (T) =

q
K

k=1 p (Ak)◊r (Ak), where r (Ak) is
some measure of the quality of the k-th terminal node; see (2.4) on page 55.
For regression trees, R (T) is the error sum of squares (SSE). For classifica-
tion trees based on the observed class priors and equal misclassification costs

72 Binary recursive partitioning with CART

(i.e., Li,j = 1 for all i ”= j), R (T) is simply the proportion of observations
misclassified in the learning sample.

Building a tree to minimize R (T) will always lead to a saturated tree, resulting
in a model with little or no bias but often high variance (i.e., overfitting the
learning sample). Instead, we penalize the complexity (or size) of the tree by
minimizing

R– (T) = R (T) + –|T |,

where – Ø 0 is a tuning parameter controlling the trade-o� between the
complexity of the tree, |T |, and how well it fits the training data, R (T). In
this sense, R– (T) can be viewed as a penalized objective function similar to
what’s used in regularized regression; see, for example, Hastie et al. [2009,
Chap. 3] or Boehmke and Greenwell [2020, Chap. 6]. When – = 0, no penalty
is incurred, resulting in the most complex tree T0. On the other extreme, we
can always find a large enough value of – that results in a decision tree with
no splits (i.e., the root node). Choosing the right value of – is important and
can be done using cross-validation or other methods; a specific cross-validation
approach is covered in Section 2.5.2.

Breiman et al. [1984, Chap. 10] showed that for each –, there exists a unique
smallest subtree, denoted T–, that minimizes R– (T). This result is important
because it guarantees that no two equally sized subtrees of T0 will have the
same value of R– (T). To obtain T–, start pruning T0 by successively collaps-
ing the internal node that produces the smallest per-node increase to R (T),
and continue until reaching the root node. This process results in a (finite)
sequence of nested subtrees (see Figure 2.14 on page 73 for an example) that
contains T–; for details, see Breiman et al. [1984, Chap. 10] or Ripley [1996,
Sec. 7.2].

To illustrate, take T0 to be the left tree in Figure 2.12, which has a total
of 154 splits. The corresponding tree diagram is displayed in the top left of
Figure 2.14. The rest of the tree diagrams in Figure 2.14 correspond to the
last 15 trees in the pruning sequence (minus the root node), ending with a
decision stump. The optimal subtree, T–, which has a total of 20 splits (or 21
terminal nodes), was found using 10-fold cross-validation and is highlighted
in green.

For comparison, I compared how each subtree performed on an independent
test set of 500 new observations. For each subtree in the pruned sequence, the
prediction error on the test set, measured as 1 ≠ R

2, where R
2 is the squared

Pearson correlation between the observed and fitted values, was computed.
Both the test and cross-validation errors are displayed in Figure 2.15. Here,
the results are similar, but the test error suggests a slightly simpler tree with
only 18 splits.

Building a decision tree 73
_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

FIGURE 2.14: Nested subtrees for the sine wave example. The optimal sub-
tree, chosen via 10-fold cross-validation, is highlighted in green.

So how is the sequence of – values determined? For any internal node A, we
can find – using

– = R (A) ≠ R (TA)
|TA| ≠ 1 ,

where TA is the subtree rooted at node A. To start pruning, we need to find
the first threshold value –1, which is just the smallest – value among the
|T | ≠ 1 internal nodes of the tree T . Once –1 is obtained, we prune the tree
by collapsing one of the |T | ≠ 1 internal nodes and making it a terminal node
whenever

–1 Ø
R (A) ≠ R (TA)

|TA| ≠ 1 .

This results in the optimal subtree, T–1 , associated with – = –1. Starting with
T–1 , we then continue this process by finding –2 in the same way we found
–1 for the full tree T . The process is continued until reaching the root node.
It might sound confusing, but we’ll walk through the calculations using the
mushroom example in the next section.

The rpart package, which is used extensively throughout this chapter, em-
ploys a slightly friendlier, and rescaled, version of the cost-complexity param-
eter –, which they denote as cp. Specifically, rpart uses

74 Binary recursive partitioning with CART

0 50 100 150

0.0

0.2

0.�

0.6

0.�

1.0

1uPEer RI splLWs

5
el

aW
Lv

e
er

rR
r

7esW errRr
10íIRlG &9

FIGURE 2.15: Relative error based on the test set (black curve) and 10-
fold cross-validation (yellow curve) vs. the number of splits for the sine wave
example. The vertical yellow line shows the optimal number of splits based
on 10-fold cross-validation, while the vertical black line shows the optimal
number of splits based on the independent test set.

Rcp (T) © R (T) + cp ◊ |T | ◊ R (T1) ,

where T1 is the tree with zero splits (i.e., the root node). Compared to –, cp

is unitless, and a value of cp = 1 will always result in a tree with zero splits.
The complexity parameter, cp, can also be used as a stopping rule during
tree construction. In many open source implementations of CART, whenever
cp > 0, any split that does not decrease the overall lack of fit by a factor of cp

is not attempted. In a regression tree, for instance, this means that the overall
R

2 must increase by cp at each step for a split to occur. The main idea is to
reduce computation time by avoiding potentially unworthy splits. However,
this runs the risk of not finding potentially much better splits further down
the tree.

2.5.1.1 Example: mushroom edibility

Let’s drive the main ideas home by calculating a few – values to prune a
simple tree for the mushroom edibility data. Consider again a simple deci-
sion tree for the mushroom edibility data which is displayed in Figure 2.16.
This is a simple tree with only three splits, but we’ll use it to illustrate how

Building a decision tree 75

pruning works and how the sequence of – values is computed. For clarity, the
number of observations in each class is displayed within each node, and the
node numbers appear at the top of each node. For example, node 8 contains
4208 edible mushrooms and 24 poisonous ones. The assigned classification,
or majority class, is printed above the class frequencies in each node. This
tree was also built using the observed class priors and equal misclassification
costs; hence, R (T) is just the proportion of misclassifications in the learning
sample: 24/8124 ¥ 0.003.

Let Ai, i œ {1, 2, 3, 4, 5, 8, 9} denote the seven nodes of the tree in Figure 2.16;
in rpart, the left and right child nodes for any node numbered x are always
numbered 2x and 2x+1, respectively (the root node always corresponds to x =
1). We can compute the risk of any terminal node using R (Ai) = Nj,A/NA. For
example, nodes A5–A7 all have a risk of zero (since they are pure nodes).

RGRU = cUeRsRWe�fisK\�fRXl�mXsW\�pXQgeQW�spic\

spRUe.pUiQW.cRlRU = gUeeQ

sWalN.cRlRU.belRZ.UiQg = \ellRZ

(GLEle
�20� 3916

100�

(GLEle
�20� 120

53�

(GLEle
�20� ��

52�

(GLEle
�20� 2�

52�

3RLsRQ
0 2�
0�

3RLsRQ
0 72
1�

3RLsRQ
0 3796

�7�

no yes

1

2

4

8 9 5 3

FIGURE 2.16: Classification tree with three splits for the mushroom edibility
data. The overall risk of the tree is 24/8124 ¥ 0.003.

To find –1, we need to first compute – for each of the |T0| ≠ 1 = 3 internal
nodes of the tree, and find which one is the smallest; use the tree diagram
in Figure 2.16 to follow along. The – values for the three internal nodes are
computed as follows:

–A1 = (3916/8124 ≠ 24/8124) / (4 ≠ 1) ¥ 0.160
–A2 = (120/8124 ≠ 24/8124) / (3 ≠ 1) ¥ 0.006
–A4 = (48/8124 ≠ 24/8124) / (2 ≠ 1) ¥ 0.003

.

76 Binary recursive partitioning with CART

Since –A4 is the smallest, we collapse node A4, resulting in the next optimal
subtree in the sequence, T–1 , which is displayed in the left side of Figure 2.17.
The cost-complexity of this tree is R–1 (T–1) = 0.015. To find –2, we start with
T–1 and repeat the process by first finding the smallest – value associated with
the |T–1 | ≠ 1 = 2 internal nodes of T–1 . These are given by

–A1 = (3916/8124 ≠ 48/8124) / (3 ≠ 1) ¥ 0.238
–A2 = (120/8124 ≠ 48/8124) / (2 ≠ 1) ¥ 0.009

,

making –2 = 0.009. We would then prune the current subtree, T–2 , by
collapsing A2 into a terminal node, resulting in the decision stump dis-
played in the right side of Figure 2.17. This makes only one possibility for
–3 = (3916/8124 ≠ 120/8124) / (2 ≠ 1) ¥ 0.467, which results in the root
node after pruning the decision stump, T–3 . In the end, we have the follow-
ing sequence of – values: (–1 = 0.003, –2 = 0.009, –3 = 0.467). In practice, we
would use cross-validation, or some other validation procedure, to select a
reasonable value of the complexity parameter – from this sequence. The next
two sections discuss choosing – using k-fold cross-validation.

RGRU = cUs�fsK�fRl�msW�pQg�spc

spRUe.pUiQW.cRlRU = gUQ

(GLEle
�20� 3916

100�

(GLEle
�20� 120

53�

(GLEle
�20� ��

52�

3RLsRQ
0 72
1�

3RLsRQ
0 3796

�7�

no yes

1

2

4 5 3

RGRU = cUs�fsK�fRl�msW�pQg�spc

(GLEle
�20� 3916

100�

(GLEle
�20� 120

53�

3RLsRQ
0 3796

�7�

no yes

1

2 3

FIGURE 2.17: Optimal subtrees in the sequence with minimum cost-
complexity. Since the original tree contains only three splits, there are only
two possible subtrees, not counting the tree with zero splits. Here the cate-
gory names have been truncated to three letters to fit more compactly in the
display.

Building a decision tree 77

2.5.2 Cross-validation

Once the sequence –1, –2, ..., –k≠1 has been found, we still need to estimate the
overall risk/quality of the corresponding sequence of nested subtrees, R–i (T),
for i = 1, 2, . . . , k ≠ 1. Breiman et al. [1984, Chap. 11] suggested picking –

using a separate validation set or k-fold cross-validation. The latter is more
computational, but tends to be preferred since it makes use of all available
data, and both tend to lead to similar results. The procedure described in
Algorithm 2.1 below follows the implementation in the rpart package in R
(see the “Introduction to Rpart” vignette):

Algorithm 2.1 K-fold cross-validation for cost-complexity pruning.

1) Fit the full model to the learning sample to obtain –1, –2, ..., –k≠1.

2) Define —i according to

—i =

Y
_]

_[

0 i = 1
Ô

–i≠1–i i = 2, 3, . . . , m ≠ 1
Œ i = m

.

Since any value of – in the interval (–i, –i+1] results in the same subtree,
we instead consider the sequence of —i’s, which represent typical values
within each range using the geometric midpoint.

3) Divide the data into k groups (or folds), D1, D2, . . . , Dk, with approx-
imately k/N observations in each (N being the number of rows in the
learning sample). For i = 1, 2, . . . , k, do the following:

a) Fit the full model to the learning sample, but omit the subset Di,
and find the sequence of optimal subtrees T—1 , T—2 , . . . , T—k .

b) Compute the prediction error from each tree on the validation set Di.

4) For each subtree, aggregate the results by averaging the k out-of-sample
prediction errors.

5) Return T— from the initial sequence of trees based on the full learning sam-
ple, where — corresponds to the —i associated with the smallest prediction
error in step 4).

78 Binary recursive partitioning with CART

2.5.2.1 The 1-SE rule

When choosing – with k-fold cross-validation, Breiman et al. [1984, Sec. 3.4.3]
recommend using the 1-SE rule, and argue that it is useful in screening out
irrelevant features. The 1-SE rule suggests using the most parsimonious tree
(i.e., the one with fewest splits) whose cross-validation error is no more than
one standard error above the cross-validation error of the best model. This
of course requires an estimate of the standard error during cross-validation.
A heuristic estimate of the standard error can be found in Breiman et al.
[1984, pp. 306–309] or Zhang and Singer [2010, pp. 42–43], but the formula
isn’t pretty! Applying cost-complexity pruning using cross-validation, with
or without the 1-SE rule, would almost surely remove all of the nonsensical
splits seen in Figure 2.11. (In fact, this was the case after applying 10-fold
cross-validation using the 1-SE rule.)

2.6 Hyperparameters and tuning

There are essentially three hyperparameters associated with CART-like deci-
sion trees:

1) the maximum depth or number of splits;
2) the maximum size of any terminal node;
3) the cost-complexity parameter cp.

Di�erent software will have di�erent names for these parameters and di�erent
default values. Arguably, cp is the most flexible and important tuning param-
eter in CART, and a good strategy is to relax the maximum depth and size
of the terminal nodes as much as possible, and use cost-complexity pruning
to find an optimal subtree using k-fold cross-validation, or some other valida-
tion procedure. In some cases, Chapter 7, for example, trees are intentionally
grown to maximal or near maximal depth (in some cases, leaving only a single
observation in each terminal node).

2.7 Missing data and surrogate splits

One of the best features of CART is the flexibility with which missing val-
ues can be handled. More traditional statistical models, like linear or logistic
regression, will often discard any observations with missing values. CART,

