
Software and examples 277

details, see the description of the respect.unordered.factors argument in
?ranger::ranger. The party and partykit packages o�er an implementation
using conditional inference trees as the base learners (Section 3.4) for the
base learners; our crforest() function from Section 7.2.3 follows the same
approach. The CRAN task view on “Machine Learning & Statistical Learning”
includes a section dedicated to RFs in R, so be sure to check that out as well:
https://cran.r-project.org/view=MachineLearning.

While randomForest is a close port of Breiman’s original Fortran code, the
ranger package is far more scalable and implements a number of modern
extensions and improvements discussed in this chapter (e.g., RF as a proba-
bility machine, Gini-corrected importance, quantile regression, case-specific
RFs, extra-trees, etc.). Another scalable implementation is available from
h2o [LeDell et al., 2021]. RFs are also part of Spark’s MLlib library [Meng
et al., 2016], which includes several R and Python interfaces (in particular,
SparkR, sparklyr, and pyspark; an example using SparkR is provided in
Section 7.9.5).

In Python, RFs, extra-trees, and isolation forests are available in the
sklearn.ensemble module. Julia users can fit RFs via the DecisionTree.jl
package. The o�cial GUIDE software (Section 4.9) has the option to construct
an RF from individual GUIDE trees; see Loh et al. [2019] and Loh [2020] for
details.

Let’s now work through several problems using random forest software.

7.9.1 Example: mushroom edibility

No! These data are easy and an ensemble would be overkill here. Remember,
the original goal of the problem was to come up with an accurate but simple
rule for determining the edibility of a mushroom. This was easily accomplished
using a single decision tree (e.g., CART with some manual pruning) or a rule-
based model like CORELS; see, for example, Figure 2.22.

7.9.2 Example: “deforesting” a random forest

In Section 5.5, I showed how the LASSO can be used to e�ectively post-
process a tree-based ensemble by essentially zeroing out the predictions from
some of the trees and reweighting the rest. The idea is that we can often
reduce the number of trees quite substantially without sacrificing much in
the way of performance. A smaller number of trees means we could, at least
in theory, compute predictions faster, which has important implications for
model deployment (e.g., when trying to score large data sets on a regular
basis). However, unless we have a way to remove the zeroed out trees from

278 Random forests

the fitted RF object, we can’t really reap all the benefits. This is the purpose of
the new deforest() function in the ranger packagem, which I’ll demonstrate
in this section using the Ames housing example.

Keep in mind that this method of post-processing is not specific to bagged
tree ensembles and RFs, and can be fruitfully applied to other types of en-
sembles as well; see Section 8.9.3 for an example using a gradient boosted tree
ensemble.

To start, I’ll load a few packages, prep the data, and create a helper function
for computing the RMSE as a function of the number of trees in a ranger-
based RF:
library(ranger)
library(treemisc) # for isle_post() function

Load the Ames housing data and split into train/test sets
ames <- as.data.frame(AmesHousing::make_ames())
ames$Sale_Price <- ames$Sale_Price / 1000 # rescale response
set.seed(2101) # for reproducibility
trn.id <- sample.int(nrow(ames), size = floor(0.7 * nrow(ames)))
ames.trn <- ames[trn.id,] # training data/learning sample
ames.tst <- ames[-trn.id,] # test data
xtst <- subset(ames.tst, select = -Sale_Price) # test features only

Function to compute RMSE as a function of number of trees
rmse <- function(object, X, y) { # only works with "ranger" objects

p <- predict(object, data = X, predict.all = TRUE)$predictions
sapply(seq_len(ncol(p)), FUN = function(i) {

pred <- rowMeans(p[, seq_len(i), drop = FALSE])
sqrt(mean((pred - y) ^ 2))

})
}

Next, I’ll fit two di�erent RFs:

RFO a default RF with B = 1, 000 maximal depth trees;

RFO.4.5 an RF with B = 1, 000 shallow (depth-4) trees, where each tree is
built using only a 5% random sample (with replacement) from the training
data.

I’ll record the computation time of each fit using system.time() (this function
will also be used later to measure scoring time), which will provide some
insight into the potential computational savings o�ered by this post-processing
methodn:

mThe deforest() function is not available in versions of ranger Æ 0.13.0.
nNote that there are better ways to benchmark and time expressions in R; see, for

example, the microbenchmark package [Mersmann, 2021].

Software and examples 279

Fit a default RF with 1,000 maximal depth trees
set.seed(942) # for reproducibility
system.time({

rfo <- ranger(Sale_Price ~ ., data = ames.trn, num.trees = 1000)
})

#> user system elapsed
#> 5.845 0.112 1.899

Fit an RF with 1,000 shallow (depth-4) trees on 5% bootstrap samples
set.seed(1021) # for reproducibility
system.time({

rfo.4.5 <- ranger(Sale_Price ~ ., data = ames.trn, num.trees = 1000,
max.depth = 4, sample.fraction = 0.05)

})

#> user system elapsed
#> 0.275 0.009 0.113

Test set MSE as a function of the number of trees
rmse.rfo <- rmse(rfo, X = xtst, y = ames.tst$Sale_Price)
rmse.rfo.4.5 <- rmse(rfo.4.5, X = xtst, y = ames.tst$Sale_Price)
c("Test RMSE (RFO)" = rmse.rfo[1000],

"Test RMSE (RFO.4.5)" = rmse.rfo.4.5[1000])

#> Test RMSE (RFO) Test RMSE (RFO.4.5)
#> 24.8 36.7

The test RMSE for the RFO model is comparable to the test RMSE from the
conditional RF fit in Section 7.2.3. In comparison, the RFO.4.5 model has a
much larger test RMSE, which we might have expected given the shallowness
of each tree and the tiny fraction of the learning sample each was built from.
Consequently, the RFO.4.5 model finished training in only a fraction of the
time it took the RFO model. As we’ll see shortly, post-processing will help
improve the performance of RFO.4.5 so that it is comparable to RFO in terms
of performance, while substantially reducing the number of trees (i.e., compa-
rable performance, faster training time, and fewer trees in the end).

Next, I’ll obtain the individual tree predictions from each forest and post-
process them using the LASSO via treemisc’s isle_post() function. Note
that k-fold cross-validation can be used here instead of (or in conjunction
with) a test set; see ?treemisc::isle_post for details. For brevity, I’ll use a
simple prediction wrapper, called treepreds(), to compute and extract the
individual tree predictions from each RF model:
treepreds <- function(object, newdata) {

p <- predict(object, data = newdata, predict.all = TRUE)
p$predictions # return predictions component

}

Post-process RFO ensemble using an independent test set

280 Random forests

preds.trn <- treepreds(rfo, newdata = ames.trn)
preds.tst <- treepreds(rfo, newdata = ames.tst)
rfo.post <- treemisc::isle_post(

X = preds.trn,
y = ames.trn$Sale_Price,
newX = preds.tst,
newy = ames.tst$Sale_Price,
family = "gaussian"

)

Post-process RFO.4.5 ensemble using an independent test set
preds.trn.4.5 <- treepreds(rfo.4.5, newdata = ames.trn)
preds.tst.4.5 <- treepreds(rfo.4.5, newdata = ames.tst)
rfo.4.5.post <- treemisc::isle_post(

X = preds.trn.4.5,
y = ames.trn$Sale_Price,
newX = preds.tst.4.5,
newy = ames.tst$Sale_Price,
family = "gaussian"

)

The results are plotted in Figure 7.20. Here, we can see that both mod-
els benefited from post-processing, but the RFO model only experienced a
marginal increase in performance compared to RFO.4.5. Is the slightly better
performance in the default RFO model enough to justify its larger training
time? Maybe in this particular example, but for larger data sets, the di�er-
ence in training time can be huge, making it extremely worthwhile. For the
post-processed RFO.4.5 model, the test RMSE is minimized using only 93
(reweighted) trees.
palette("Okabe-Ito")
plot(rmse.rfo, type = "l", ylim = c(20, 50),

las = 1, xlab = "Number of trees", ylab = "Test RMSE")
lines(rmse.rfo.4.5, col = 2)
lines(sqrt(rfo.post$results$mse), col = 1, lty = 2)
lines(sqrt(rfo.4.5.post$results$mse), col = 2, lty = 2)
legend("topright", col = c(1, 2, 1, 2), lty = c(1, 1, 2, 2),

legend = c("RFO", "RFO.4.5","RFO (post)", "RFO.4.5 (post)"),
inset = 0.01, bty = "n")

palette("default")

To make this useful in practice, we need a way to remove trees from a fit-
ted RF (i.e., to “deforest” the forest of trees). This could vastly speed up
prediction time and reduce the memory footprint of the final model. Fortu-
nately, the ranger package includes such a function; see ?ranger::deforest
for details.

In the code snippet below, I “deforest” the RFO.4.5 ensemble by removing
trees corresponding to the zeroed-out LASSO coe�cients, which requires es-

Software and examples 281

0 200 �00 600 �00 1000

20

25

30

35

�0

�5

50

1uPEer RI Wrees

7e
sW

 5
0

S
(

5)2
5)2.�.5
5)2 (pRsW)
5)2.�.5 (pRsW)

FIGURE 7.20: Test RMSE for the RFO and RFO.4.5 fits. The dashed lines
correspond to the post-processed versions of each model. Note how the RFO
model only experienced a marginal increase in performance compared to the
RFO.4.5 model.

timating the optimal value for the penalty parameter ⁄ (it might be helpful
to read the help page for ?glmnet::coef.glmnet):
res <- rfo.4.5.post$results # post-processing results on test set
lambda <- res[which.min(res$mse), "lambda"] # optimal penalty parameter
coefs <- coef(rfo.4.5.post$lasso.fit, s = lambda)[, 1L]
int <- coefs[1L] # intercept
tree.coefs <- coefs[-1L] # no intercept
trees <- which(tree.coefs == 0) # trees to remove

Remove trees corresponding to zeroed-out coefficients
rfo.4.5.def <- deforest(rfo.4.5, which.trees = trees)

Check size of each object
c(

"RFO.4.5" = format(object.size(rfo.4.5), units = "MB"),
"RFO.4.5 (deforested)" = format(object.size(rfo.4.5.def), units = "MB")

)

#> RFO.4.5 RFO.4.5 (deforested)
#> "1 Mb" "0.1 Mb"

282 Random forests

Notice the impact this had on reducing the overall size of the fitted model.
This can often lead to a much more compact model that’s easier to save and
load when memory requirements are a concern.

We can’t just use the “deforested” tree ensemble directly; remember, the
estimated LASSO coe�cients imply a reweighting of the remaining trees!
To obtain the reweighted predictions from the “deforested” model, we need
to do a bit more work. Here, I’ll create a new prediction function, called
predict.def(), that will compute the reweighted predictions from the re-
maining trees using the estimated LASSO coe�cients—similar to how predic-
tions in a linear model are computed.

To test it out, I’ll stack the learning sample (ames.trn) on top of itself 100
times, resulting in N = 205, 100 observations for scoring. Below, I compare the
prediction times for both the original (i.e., non-processed) and “deforested”
RFO.4.5 fits:
ames.big <- # stack data on top of itself 100 times

do.call("rbind", args = replicate(100, ames.trn, simplify = FALSE))

Compute reweighted predictions from a ��deforested�� ranger object
predict.def <- function(rf.def, weights, newdata, intercept = TRUE) {

preds <- predict(rf.def, data = newdata,
predict.all = TRUE)$predictions

res <- if (isTRUE(intercept)) { # returns a one-column matrix
cbind(1, preds) %*% weights

} else {
preds %*% weights

}
res[, 1, drop = TRUE] # coerce to atomic vector

}

Scoring time for original RFO.4.5 fit
system.time({ # full random forest

preds <- predict(rfo.4.5, data = ames.big)
})

#> user system elapsed
#> 37.15 2.64 13.35

Scoring time for post-processed RFO.4.5 fit using updated weights
weights <- coefs[coefs != 0] # LASSO-based weights for remaining trees
system.time({

preds.post <- predict.def(rfo.4.5.def, weights = weights,
newdata = ames.big)

})

#> user system elapsed
#> 4.17 0.73 4.47

Software and examples 283

The final model contains only 93 trees and achieved a test RMSE of 26.59,
while also being orders of magnitude faster to initially train. The computa-
tional advantages are easier to appreciate on even larger data sets.

In summary, I used the LASSO to post-process and “deforest” a large ensemble
of shallow trees (which trained relatively fast), producing a much smaller
ensemble with fewer trees that scores faster compared to the default RFO.
While the default RFO model had a slightly smaller test RMSE of 24.72
compared to the “deforested” RFO.4.5 test RMSE of 111.29, the di�erence is
arguably negligible (especially when you take the di�erences in both training
and scoring time into account).

7.9.3 Example: survival on the Titanic

In this example, I’ll walk through a simple RF analysis of the well-known
Titanic data set, where the goal is to understand survival probability aboard
the ill-fated Titanic. A more thoughtful analysis using logistic regression and
spline-based techniques is provided in Harrell [2015, Chap. 12].

Several versions of this data set are publicly available; for example, in the
R package titanic [Hendricks, 2015]. Here, I’ll use a more complete ver-
sion of the datao which can be loaded using the getHdata() from pack-
age Hmisc [Harrell, 2021]; the raw data can also be downloaded from
https://hbiostat.org/data/. In this example, I’ll only consider a handful
of the original variables:
t3 <- read.csv("https://hbiostat.org/data/repo/titanic3.csv",

stringsAsFactors = TRUE)
keep <- c("survived", "pclass", "age", "sex", "sibsp", "parch")
t3 <- t3[, keep] # only retain key variables

Note that roughly 20.09% of the values for age, the age in years of the pas-
senger, are missing:
sapply(t3, FUN = function(x) mean(is.na(x)))

#> survived pclass age sex sibsp parch
#> 0.000 0.000 0.201 0.000 0.000 0.000

Following Harrell [2015, Sec. 12.4], I use a decision tree to investigate which
kinds of passengers tend to have a missing value for age. In the example be-
low, I use the partykit package to apply the CTree algorithm (Chapter 3)
using a missing value indicator for age as the response. From the tree out-
put we can see that third-class passengers had the highest rate of missing
age values (29.3%), followed by first-class male passengers with no siblings or

oA description of the original source of these data is provided in Harrell [2015, p. 291].

