
Gradient tree boosting from scratch 323

using N -fold (or leave-one-out) cross-validation and computed at virtually no
extra cost to the fitting algorithm. However, as stated in Section 7.3, the OOB
approach can provide overly pessimistic estimates of the true error, but can
still be used for hyperparameter tuning [Janitza and Hornung, 2018]. Since
GBMs have lots of tuning parameters, the OOB approach provides a compu-
tationally feasible solution to selecting a reasonable learning rate, number of
trees, etc.

It’s important to note that Janitza and Hornung [2018] refer specifically to
OOB-based error estimates for RFs, not GBMs. To this day, I have yet to see
an extensive study on the usefulness of OOB-based error estimates in GBMs
compared to more traditional cross-validation approaches.

8.4.1 Column subsampling

Column subsampling is another technique that can be used to improve model
performance and speed up fitting. Similar to column subsampling in an RF,
a subsample of columns can be used for building each individual treej. Ap-
parently subsampling the columns prior to building each tree, can reduce the
chances of overfitting even more than traditional row subsampling [Chen and
Guestrin, 2016].

To illustrate, consider the test MSE curves for the ALS data displayed in
Figure 8.3. In this example, subsampling the columns appears to outperform
subsampling the rows (here, I arbitrarily chose a subsampling rate of 0.3).
In practice these parameters need to be tuned, but it’s probably safe and
more computationally e�cient in practice to just deal with one of these two
hyperparameters. If you’re dealing with a really wide data set, it may be
more e�cient to consider column subsampling, or both column subsampling
and row subsampling if you have many rows as well.

8.5 Gradient tree boosting from scratch

Let’s implement a quick-and-dirty gradient tree boosting function based on
LS loss. The function, called lsboost(), is available in package treemisc (see
?treemisc::lsboost for details and a description of the arguments), but the
code is relatively straightforward and reproduced in the code chunk below. It’s

jWhile similar, an RF chooses a random subsample of features prior to each split of
every tree.

324 Gradient boosting machines

0.

0.6

0.

1.0

0 50 100 150 200 250
u er rees

ea
s

ua
re

 e
rr

r

Su sa ple r s

Su sa ple lu s

FIGURE 8.3: E�ect of subsampling in GBMs on the ALS data. In this case,
randomly subsampling the columns (yellow curve) slightly outperforms ran-
domly subsampling the rows (black curve).

worth noting a few things about lsboost() and predict.lsboost(), before
we continue:

• the code uses R’s built-in S3 object-oriented (OO) programming sys-
tem [Wickham, 2019, Chap. 13], which allows us to extend R’s built-in
predict() generic via the predict.lsboost() function (e.g., so we can
compute predictions with, say, predict(my.lsboost.model, newdata =
some.data));

• lsboost() uses rpart to fit the individual regression trees, but other
implementations could be used instead (e.g., CTrees via partykit);

• lsboost() returns an object of class "lsboost", which is essentially a list
of rpart trees that the predict() function knows how to combine;

• these functions are for illustration and not meant for serious use—they are
not optimized in any sense.

If you cut out the flu�, gradient tree boosting, at least with LS loss, can be
implemented in as little as 10 lines of code (probably less):
lsboost <- function(X, y, ntree = 100, shrinkage = 0.1, depth = 6,

subsample = 0.5, init = mean(y)) {
yhat <- rep(init, times = nrow(X)) # initialize fit; f_0(x)
trees <- vector("list", length = ntree) # to store each tree
ctrl <- # control tree-specific parameters

Gradient tree boosting from scratch 325

rpart::rpart.control(cp = 0, maxdepth = depth, minbucket = 10)
for (tree in seq_len(ntree)) { # Step 2) of Algorithm 8.1

id <- sample.int(nrow(X), size = floor(subsample * nrow(X)))
samp <- X[id,] # random subsample
samp$pr <- y[id] - yhat[id] # pseudo residual
trees[[tree]] <- # fit tree to current pseudo residual

rpart::rpart(pr ~ ., data = samp, control = ctrl)
yhat <- yhat + shrinkage * predict(trees[[tree]], newdata = X)

}
res <- list("trees" = trees, "shrinkage" = shrinkage,

"depth" = depth, "subsample" = subsample, "init" = init)
class(res) <- "lsboost"
res

}

Extend R�s generic predict() function to work with "lsboost" objects
predict.lsboost <- function(object, newdata, ntree = NULL,

individual = FALSE, ...) {
if (is.null(ntree)) {

ntree <- length(object[["trees"]]) # use all trees
}
shrinkage <- object[["shrinkage"]] # extract learning rate
trees <- object[["trees"]][seq_len(ntree)]
pmat <- sapply(trees, FUN = function(tree) { # all predictions

shrinkage * predict(tree, newdata = newdata)
}) # compute matrix of (shrunken) predictions; one for each tree
if (isTRUE(individual)) {

pmat # return matrix of (shrunken) predictions
} else {

rowSums(pmat) + object$init # return boosted predictions
}

}

Gradient tree boosting with LS loss is simpler to implement because there’s no
need to perform the line search step in Algorithm 8.1 (i.e., the terminal node
estimates are already optimal). A slightly more complicated function that also
implements gradient tree boosting with rpart, but using LAD loss, is shown
below; this function is also part of treemisc (see ?treemisc::ladboost for
details). Here, care needs to be taken to update the terminal node summaries
accordingly (see the commented section starting with # Line search). For
LAD loss, we simply use the terminal node sample medians, as discussed
in Section 8.2; here, I update the frame component of the rpart tree, but
partykit could also be used, as illustrated in the commented out section. Also,
note that the initial fit (init) defaults to the median response as well.
ladboost <- function(X, y, ntree = 100, shrinkage = 0.1, depth = 6,

subsample = 0.5, init = median(y)) {
yhat <- rep(init, times = nrow(X)) # initialize fit
trees <- vector("list", length = ntree) # to store each tree

326 Gradient boosting machines

ctrl <- # control tree-specific parameters
rpart::rpart.control(cp = 0, maxdepth = depth, minbucket = 10)

for (tree in seq_len(ntree)) {
id <- sample.int(nrow(X), size = floor(subsample * nrow(X)))
samp <- X[id,]
samp$pr <- sign(y[id] - yhat[id]) # use signed residual
trees[[tree]] <-

rpart::rpart(pr ~ ., data = samp, control = ctrl)
#--
Line search; update terminal node estimates using median
#--
where <- trees[[tree]]$where # terminal node assignments
map <- tapply(samp$pr, INDEX = where, FUN = median)
trees[[tree]]$frame$yval[where] <- map[as.character(where)]
#
Could use partykit instead:
#
trees[[tree]] <- partykit::as.party(trees[[tree]])
med <- function(y, w) median(y) # see ?partykit::predict.party
yhat <- yhat +
shrinkage * partykit::predict.party(trees[[tree]],
newdata = X, FUN = med)
#--
yhat <- yhat + shrinkage * predict(trees[[tree]], newdata = X)

}
res <- list("trees" = trees, "shrinkage" = shrinkage,

"depth" = depth, "subsample" = subsample, "init" = init)
class(res) <- "ladboost"
res

}

8.5.1 Example: predicting home prices

Let’s apply the lsboost() function to the Ames housing data. Below, I use the
same train/test split for the Ames housing data we’ve been using throughout
this book, then call lsboost() to fit a GBM to the training set; here, I’ll use
a shrinkage factor of ‹ = 0.1:
library(treemisc)

Split Ames data into train/test sets using a 70/30 split
ames <- as.data.frame(AmesHousing::make_ames())
ames$Sale_Price <- ames$Sale_Price / 1000 # rescale response
set.seed(4919) # for reproducibility
id <- sample.int(nrow(ames), size = floor(0.7 * nrow(ames)))
ames.trn <- ames[id,]
ames.tst <- ames[-id,]

Interpretability 327

Fit a gradient tree boosted ensemble with 500 trees
set.seed(1110) # for reproducibility
ames.bst <-

lsboost(subset(ames.trn, select = -Sale_Price), # features only
y = ames.trn$Sale_Price, ntree = 500, depth = 4,
shrinkage = 0.1)

The test RMSE as a function of the number of trees in the ensemble is com-
puted below using the previously defined predict() method; the results are
shown in Figure 8.4 (black curve). For brevity, the code uses sapply() to
essentially iterate cumulatively through the B = 500 trees and computes the
test RMSE for the first tree, first two trees, etc. For comparison, the test RM-
SEs from a default RF are also computed and displayed in Figure 8.4 (yellow
curve). In this example, the GBM slightly outperforms the RF.
set.seed(1128) # for reproducibility
ames.rfo <- # fit a default RF for comparison

randomForest(subset(ames.trn, select = -Sale_Price),
y = ames.trn$Sale_Price, ntree = 500,
Monitor test set performance (MSE, in this case)
xtest = subset(ames.tst, select = -Sale_Price),
ytest = ames.tst$Sale_Price)

Helper function for computing RMSE
rmse <- function(pred, obs, na.rm = FALSE) {

sqrt(mean((pred - obs)^2, na.rm = na.rm))
}

Compute RMSEs from both models on the test set as a function of the
number of trees in each ensemble (i.e., B = 1, 2, ..., 500)
rmses <- matrix(nrow = 500, ncol = 2) # to store results
colnames(rmses) <- c("GBM", "RF")
rmses[, "GBM"] <- sapply(seq_along(ames.bst$trees), FUN = function(B) {

pred <- predict(ames.bst, newdata = ames.tst, ntree = B)
rmse(pred, obs = ames.tst$Sale_Price)

}) # add GBM results
rmses[, "RF"] <- sqrt(ames.rfo$test$mse) # add RF results

8.6 Interpretability

Interpreting GBMs is no di�erent from any other nonparametric model. For
example, Section 5.4 discussed how the individual tree-based importance
scores (Section 2.8) can be aggregated across all the trees in an ensemble

328 Gradient boosting machines

5

6

7

0 100 200 300 00 500
u er rees

es

S

ra e s e rees

a res

FIGURE 8.4: Root mean-squared error for the Ames housing test set as a
function of B, the number of trees in the ensemble. Here, I show both a GBM
(black curve) and a default RF (yellow curve). In this case, gradient tree
boosting with LS loss, a shrinkage of ⁄ = 0.1, and a maximum tree depth of
d = 4 (black curve) slightly outperforms a default RF (yellow curve).

to form a more stable measure of predictor importance; however, as with
CART and RFs, this measure is also biased for GBMs, although, the permu-
tation importance method (Section 6.1.1) applies equally well to GBMs, or
any supervised learning model, for that matter. PDPs and ICE plots can be
used to visualize the global and local e�ect that subsets of features have on
the model’s predictions, respectively. Shapley values, among other techniques,
can be used to infer the contribution each feature value has on the di�er-
ence between its associated prediction and the model’s baseline (or average
training) prediction, which can also be used to generate global measures of
both feature importance and feature e�ects. The next two sections discuss
specialized interpretability techniques often associated with GBMs.

8.6.1 Faster partial dependence with the recursion method

For regression trees based on single-variable splits, Friedman [2001] described
a fast procedure for computing the partial dependence of ‚f (x) on a subset
of features using a weight traversal of each tree (henceforth referred to as the

